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ABSTRACT

A central problem in applying logical knowledge representation
formalisms to traditional robotics is that the treatment of belief
change is categorical in the former, while probabilistic in the lat-
ter. A typical example is the fundamental capability of localization
where a robot uses its many noisy sensors to situate itself in a dy-
namic world. Domain designers are then left with the rather un-
fortunate task of abstracting probabilistic sensors in terms of cat-
egorical ones, or more drastically, completely abandoning the in-
ner workings of sensors to black-box probabilistic tools and then
interpreting their outputs in an abstract way. Building on a first-
principles approach by Bacchus, Halpern and Levesque, and a re-
cent continuous extension to it by Belle and Levesque, we provide
an axiomatization that shows how localization can be realized as
a basic action theory, thereby demonstrating how such capabilities
can be enabled in a single logical framework.

Categories and Subject Descriptors

1.2.4 [Artificial Intelligence]: Knowledge Representation For-
malisms and Methods

General Terms
Theory

1. INTRODUCTION

Cognitive robotics, as envisioned in [25, 23], is a high-level con-
trol paradigm that attempts to apply knowledge representation (KR)
technologies to the reasoning problems faced by an autonomous
agent/robot in an incompletely known dynamic world. It is a chal-
lenging problem: in the least, reasonable features of action/change
such as the frame and ramification problems need addressing, but
if the robot has limited information then acting, sensing, knowl-
edge and belief change also need to be taken into account. To this
end, in the case of a popular action formalism such as the situa-
tion calculus [33], one usually provides a set of logical sentences
called a basic action theory which explicates in a precise way the
properties of the world and their relation to the agent’s sensors and
effectors. When that is further supported using complex actions
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and procedures, one obtains a powerful and general methodology
for designing intelligent agents, seen for example in [17, 8, 23].

Although a tight pairing of sensor data and high-level control is
indeed what is desired, typical sensor data is best treated proba-
bilistically [40] while many knowledge change accounts are cat-
egorical [12]. A domain designer is now left with the rather un-
fortunate task of abstracting probabilistic sensors in terms of cate-
gorical ones, or more drastically, completely abandoning the inner
workings of sensors to black-box probabilistic tools and then inter-
preting their outputs in an abstract way. Regardless of application
domains where such a move might be appropriate, for reasons com-
putational or otherwise, both of these limitations are very serious
since they challenge the underlying theory as a genuine character-
ization of the agent. Other major concerns include: (a) the loss of
granularity, as it is not clear at the outset which aspect of the sensor
data is being approximated and by how much, and (b) the domain
designer is at the mercy of her intuition to imagine the various ways
sensors might get used.

A first-principles proposal by Bacchus, Halpern and Levesque
[2], BHL henceforth, is perhaps the most general account to rec-
tify this problem. Embedded in the usual machinery of a basic
action theory, the BHL scheme enriches the situation calculus with
an account of probabilistic nondeterminism. The enrichment al-
lows us to talk about belief change in the formalism, which is com-
patible with earlier accounts on knowledge [37] while also follow-
ing Bayesian conditioning [31]. In contrast to many probabilistic
formalisms (see the penultimate section for more on this), it al-
lows for partial specifications, i.e. distributions where only some
of the fluents in the domain may be provided, as well as strict un-
certainty (disjunctions and quantification). Recently, we [4] have
further extended the BHL framework to reason about noise that is
continuous. Building on these results, we now consider the most
basic capability needed for an autonomous agent to situate itself:
the localization problem. Roughly speaking, given a spatial char-
acterization of the robot’s environment, the robot is to identify its
pose (location and orientation) to a reasonable certainty using its
Sensors.

Localization has been addressed using a number of algorithmic
techniques for more than two decades in the robotics literature [10,
40]. Our objective will not be to compete with these techniques; in
fact, this paper will not concern itself with algorithms at all. Rather,
we want to show how localization can be understood as part of
a larger effort in a single logical framework. To the best of our
knowledge, this has not been attempted before. Nevertheless, we
remark that owing to the first-order nature of the formalism, our
account of localization, among other capabilities, is significantly
more general than most, if not all, probabilistic formalisms.

The agenda for this paper will be as follows. We first introduce



the preliminaries for reasoning about degrees of belief in the logi-
cal language of the situation calculus. We then iteratively develop
the steps needed to localize a robot in an uncertain world. As one
would expect (and desire), given the domain axiomatization, we
show that localization is realized entirely within the logic in terms
of belief change. Perhaps most significantly, we demonstrate how
the framework subsumes probabilistic formalisms by using the full
range of situation calculus successor state axioms and sensing ax-
ioms. We then discuss related work and conclude.

2. THE SITUATION CALCULUS

The language L of the situation calculus [28] is a many-sorted
dialect of predicate calculus, with sorts for actions, situations and
objects. A situation represents a world history as a sequence of ac-
tions. A set of initial situations correspond to the ways the world
might be initially. Successor situations are the result of doing ac-
tions, where the term do(a, s) denotes the unique situation obtained
on doing «a in situation s. The term do(a, s), where « is the se-
quence [ay,...,a,] abbreviates do(a,,do(. . .,do(ay, s) .. .)). Initial
situations are defined as those without a predecessor:'

Init(s) = =3a, s'. s = do(a, s').

We let the constant S, denote the actual initial situation, and we use
the variable ¢ to range over initial situations only.

In each model of £, the situations can be structured into a set of
trees, where the root of each tree is an initial situation and the edges
are actions. In dynamical domains, we want the values of predicate
and functions to vary from situation to situation. For this purpose,
L includes fluents whose last argument is always a situation. Here
we assume without loss of generality that all fluents are functional.

We follow some notational conventions. Free variables are as-
sumed to be implicitly quantified from the outside. We often sup-
press the situation argument in a formula ¢, or use a distinguished
variable now. Either way, ¢[¢] is used to denote the formula with
that variable replaced by .

Basic action theory

Following [33], we model dynamic domains in £ by means of a
basic action theory D that consists of

1. sentences D that describe what is true in the initial states,
including So;

2. precondition axioms of the form Poss(a, s) = ¢ describing
the conditions under which actions are executable;?

3. successor state axioms of the form f(do(a, 5)) = u = y,(a, u, s)
determining the fluent values on executing actions;

4. domain-independent foundational axioms, the details of which
need not concern us here. See [33].

An agent reasons about actions by means of the entailments of
D, for which standard Tarskian models suffice. We assume hence-
forth that models also assign the usual interpretations to =, <, >,
0,1,+,%,/,—e,m and x’ (exponentials).

The formalism used in this paper is the situation calculus as char-
acterized by Reiter in [33]. Nevertheless, for convenience, we often
introduce formula and term abbreviations that are meant to expand
as L-formulas. For example, we might introduce a new formula A
by A = ¢, where ¢ € L. Then any expression E(A) containing A
is assumed to mean E(¢). Analogously, if we introduce a new term
tby t = u = ¢(u) then any expression E(f) is assumed to mean
Ju(EQ) A p(u)).

Free variables, here and everywhere else, are assumed to be im-
plicitly quantified from the outside.

Following [4], in the sequel, we will be assuming that fi,..., fi
are all the fluents in £, and that they only take a single situation
term as an argument. See [4] for a discussion. Note that we still
allow these fluents to range over any set, including the reals R.

Belief, likelihood and continuous noise

The BHL model of belief enriches the standard situation calculus
to reason about noisy sensors and belief change, by building on a
treatment of knowledge by Scherl and Levesque [37]. A major lim-
itation of their work is the restriction to discrete noise, in contrast
to the continuous noise usually encountered in robotics [40]. This
limitation has been recently lifted in [4], which we briefly review
below and is based on two distinguished binary fluents / and p.

The term I(a, 5) is intended to denote the likelihood of action a
in situation s. The axioms for / vary from domain to domain (we
will see some examples shortly), but they have the general form
of [(A(X),s) = u = ¢a(X, u, s) which characterizes the conditions
under which action type A has likelihood u in s.

Next, the p fluent determines a probability distribution on situ-
ations. The term p(s’, s) denotes the relative density accorded to
situation s* when the agent happens to be in situation s. The prop-
erties of p in initial states, which vary from domain to domain,
are specified by axioms as part of 9, as one would for any other
functional fluent (examples are discussed shortly). Now, to give p
the required properties, so that it behaves like a probability density,
three axioms (listed in Table 1) are needed:

— (i). Assumed to be part of Dy, this is a nonnegative constraint
on p. While this is indeed a stipulation about initial states ¢
only, by means of the next item, the nonnegative constraint
continues to hold everywhere.

— (ii). This successor state axiom states that, given an appropri-
ate action likelihood axiom, the density of situations s’ rel-
ative to do(a, s) is the density of their predecessors s’ times
the likelihood of a contingent on the successful execution of
a at s”. One consequence of (i) and (ii) is that (p(s’, s) > 0)
will be true only when s" and s share the same history of
actions. Both of these items, in fact, are inherited from BHL.

— (iii). This sentence is to be included in D, to impress exactly
one initial situation for any vector of fluent values, which
follows [26] for realizing a precise space of initial situations.

In [4], we show that these 3 axioms are all that is needed to
define belief and belief change in presence of continuity. If ¢ is a
formula with a single free variable of sort situation, then the degree
of belief in ¢ is simply defined as a logical term by the following
abbreviation:

1
Bel(p,s) =u = u= ;fDensity()?, @, 5)

where the normalization factor y is understood throughout as the
same expression as the numerator but with ¢ replaced by true, L
is a logical term formalized using second-order logic that corre-
sponds to mathematical integration (see [4]), and Density(¥, ¢, s) is
an abbreviation that returns the density associated with ¢ at s:

Density(Z, ¢, do(a, s)) = u =
. A fi(©) = x; A pldo(a, )] A u = p(do(a,t),do(a, Sy)) V
=[3e. A fi(©) = x; A ¢ldo(a,)]] Au = 0.
The intuition is as follows. Using (iii), we obtain a bijection be-

tween initial situations and fluent values. By integrating over X in
the usual mathematical sense, we simply pick the appropriate initial



i. Vi, 8. p(s,0) =20 A (p(s,0) > 0 D Init(s)).

ii. p(s,do(a,s))=u =
As” [’ = do(a, s”) A Poss(a, s”) A
u=p(s’,s)xla,s")]
VvV =ds” [ =do(a, s”) A Poss(a,s”) Au=0].

iii. (VXA £i() =x) A VLU fi) = fild) De=2).

Table 1: Axioms in D for p.

situation, test whether ¢ holds after doing a and use the correspond-
ing p value. In this presentation, we have assumed for simplicity
that all fluents take values over R, and so for discrete fluents, one
would simply replace the integral with a summation (over its pos-
sible values) where appropriate. This, then, summarizes the pro-
posal. Basically, the following components were needed:

e abbreviations Bel and Density that expand as L-expressions;

e an initial theory about Sy, including (iii) to accommodate
multiple initial situations and p’s initial constraint (i);

e action likelihood axioms using /;
e successor state and precondition axioms, including (ii) for p.

In the sequel, we assume action theories to include (i), (ii) and (iii).
It is worth noting that the account of belief change using Bel fol-
lows Bayesian conditioning [4], which will be demonstrated below.

3. AXIOMATIZING LOCALIZATION

One of the significant features about the BHL scheme and its
continuous variant is that robot localization, among other capabili-
ties, follows logically from a basic action theory. No new founda-
tional axioms are necessary. In fact, localization is a certain degree
of belief regarding position and orientation, and so by reasoning
about belief change in terms of projection [33], the robot would get
localized. On the one hand, this is perhaps expected as many state
estimation techniques in robotics are based on Bayesian condition-
ing, but on the other, we are demonstrating this capability in a very
rich first-order framework.

In this section, we develop a simple example and a basic action
theory corresponding to this example. Localization will then be
demonstrated in terms of logical entailments of the action theory.
We think many of the features of our example are suggestive of
how one would approach more complex domains. In the main, the
example involves the following steps:

e a characterization of the environment (walls, doors, etc.);

e a characterization of the uncertainty of the robot about this
environment (its position and orientation); and

e acharacterization of the robot’s actions and sensors, and how
they depend on and affect the environment.

The basic action theory D developed for these characterizations
will be built using three fluents £ (horizontal position), v (verti-
cal position) and 6 (orientation) that will determine the pose of the
robot, a single rigid predicate Solid used to axiomatize the environ-
ment, two action types move(z, w) and rotate(z) that determine how
the robot moves and how these affect the fluents using successor
state axioms, a single sensing action sonar(z), and convenient ab-
breviations that expand into formulas involving the aforementioned

iv. {Solid(0,0,10), Solid(5,0, 1), Solid(5,2, 1),
Solid(5, 4, 3), Solid(5, 8, 2)}.

v. Poss(a) = true.

vi. h(do(a,s)) =u=
=3z, w(a = move(z,w)) Au = h(s) V
dz, w(a = move(z, w) Au = max(6(s), h(s) —z-cos(w))).

=

vii. v(do(a, s)) =u =
=dz, w(a = move(z,w)) Au = v(s) V

Az, w(a = move(z,w) A u = v(s) + z - sin(w)).

viii. 6(do(a,s)) =u =
—Jz(a = rotate(z) A u = 6(s)) v
dz(a = rotate(z) A u = (((6(s) + z)mod 360) — 180)).

—-

X. {l(move(z,w), s) = 1, l(rotate(z), s) = 1}.

X. l(sonar(z),s) =u =
Blocked(s) A u = N6/ cos(6) — z;0, 1)[s] v
=Blocked(s) A u= N6 + 1)/ cos(8) — z;0, 1)[s].

Table 2: A basic action theory for the domain.

logical symbols. Of course, we assume D to also mention Poss, [
and p, which are distinguished L-symbols. We reiterate that we
will not need any machinery beyond Reiter’s version [33].

Environment

The very first item on the agenda is the notion of a map, which
for our purpose will simply mean an axiomatic formulation of the
physical space. Our example is as follows. We imagine two walls
that are parallel to each other and 10 units long, as in Figure 1. The
one on the extreme left of the robot, which we refer to as WALL-E in
the sequel, is without any doors, while the one that is adjacent to the
robot, referred to as WALL-A, has 3 open doors. The doors extend
for one unit each. We are imagining a coordinate system that has
WALL-E on the Y-axis, and puts the bottom edge of WALL-E at the
origin.

We develop a simple axiomatization to describe this physical
space. (For more general formalizations, see [16, 24], and ref-
erences therein.) We think of the walls in terms of continuous
solid segments, that is, WALL-E is considered to be a single chunk,
while WALL-A is thought of as 4 components. We will be ig-
noring the thickness of walls for simplicity. In precise terms, let
Solid(x,y,d) indicate that beginning at the coordinate (x,y), one
finds a solid structure of length d extending from (x, y) to (x,y + d).
Of course, we are using a rigid predicate because walls are station-
ary; for dynamic objects, such as the robot, fluents will be used.
With this idea, we could characterize (say) WALL-E by including
Solid(0, 0, 10) in Dy. For both walls, then, D, is assumed to in-
clude the formulas (iv) from Table 2.

It should be clear that one may easily extract various directional
and spatial relationships between such objects as appropriate. For
example, although entirely obvious here, to calculate the distance
between the walls, one may define an abbreviation A as follows:

A=u=3x,y,d,x,y,d. Solid(x,y,d) A Solid(x',y',d") A
x#X Au=|x—-x|
Robot: physical actions

Here, we characterize the robot’s position, its world-changing ac-
tions, and their relationships.
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Figure 1: Two walls and a robot.

The pose of the robot is given by three fluents: £, v and 6, where
(h,v) is the robot’s location, and @ is the orientation. We let 6 range
from —180 to 180 (degrees), with # = 0 indicating that the robot
is perpendicular to WALL-E and directed towards it, and § = 90
indicating that the robot is perpendicular to the X-axis and directed
towards the positive half of the Y-axis.

We imagine two physical action types at the robot’s disposal,
move(z, w) and rotate(z). We are thinking that the robot is capable
of moving z units along the orientation w (degrees) wrt its angular
frame. That is, for w = 0, the robot move would z units towards
WALL-E, and for w = 90, the robot would move z units along the
positive Y-axis, i.e. parallel to WALL-E. The robot can also orient
itself in-place, using rotate(z). For these actions, one also needs to
specify their preconditions, and their likelihood axioms. For sim-
plicity, we assume these and all other actions in domain (including
the sensing action to be discussed shortly) are always executable,
given by (v). Likelihood axioms may be used to specify probabilis-
tic nondeterminism. Again, for simplicity, we consider probabilis-
tic nondeterminism only with sensing actions, and so these physical
actions are assumed to be deterministic, given by (ix).

The values of fluents change after actions, of course. The for-
mula (ii) already specifies how p behaves in successor situations.
‘We now do the same for &, v and 6. Since move(z) and rotate(z) are
the only physical actions, the successor state axioms for 4, v and
will only mention these actions. They are given as (vi), (vii) and
(viii) respectively. Let us consider them in order.

In the case of i, we would like (say) move(z, 0) to bring the robot
z units towards the wall on its left, but that motion should stop if
the robot hits the wall. For this, it is perhaps easiest to first infer the
distance between the robot and the closest wall on its left. This can
be done as follows. For an arbitrary coordinate (x*,y*), we define
an abbreviation for the nearest wall on its left:

NearestLeft(x*,y*) = d = Ax,y,d. Solid(x,y,d) Ny* € [y,y+d] A
. Ad =" —-x).

We use u € [v,w] to mean u > v Au < w, and the ellipsis stands for
=3x,y,d. Solid(x',y' ,dYAy" € [y,y +d'] A(x"—x") < (x" —Xx).

To now extract the distance between the robot and the nearest wall
on its left, simply define an abbreviation § as follows:

0(s) = u = u = NearestLeft(h(s), v(s)).

This now allows us to dissect (vi). It says that move(z, w) is the
only action affecting 4, thereby incorporating Reiter’s monotonic

solution the frame problem, and it decrements / by z cos(w) units
but stops if the robot hits the nearest wall on its left. Note that,
then, the value of /& will become ¢. For example, if 6 = 0, then the
new value of 4 is simply decremented by z, and if 8 = 180, which
would mean the robot is facing away from WALL-A then & would
be incremented by z (since cos(180) is -1.)

For the fluent v, the treatment is analogous, as shown in (vii).
That is, move(z, w) would increment v by z - sin(d). For example,
if z = 90, then the move action would simply increment v since
the motion would be along the Y-axis in an incremental fashion.
Naturally, if one were to give a negative argument, say —3, to move,
then the robot would move from (h, v) to (h,v — 3).

Finally, 6 is manipulated using rotate(z) in an incremental man-
ner while keeping its range in [—-180, 180] in (viii).

Robot: sensors

The robot is assumed to have a sonar unit on its frontal surface, that
is, along §. We take this sensor to be noisy. What this means is that
if the robot is facing WALL-A, then a reading z from the sensor may
differ from ¢, but perhaps in some reasonable way. Most sensors
have additive Gaussian noise [40], which is to say the likelihood of
z is obtained from a normal curve whose mean is 9.

The complication here is that there are two walls and depending
on the robot’s pose, the sensor might be measuring either ¢ or A+ 9.
For example, if & € [0, 1] and 6 = 0, we understand that the sonar’s
signals would likely be centered around 6. However, if v < 1 but the
robot’s orientation is such that the sonar’s signals advance through
the gap at [1, 2], then the robot’s sonar unit would suggest values
closer to § + A rather than ¢ alone. To provide a satisfactory / axiom
for a sensor, let us first introduce an abbreviation for what it means
for a sensor’s signals to stop at WALL-A:

Blocked(s) = Ax, y,d. Solid(x,y, d) A h(s) = x + 6(s) A
(v+6-tan(0)[s] € [y,y +d].

To make sense of this in (converse) terms of when signals would
reach WALL-E, note that if v < 1 and yet v + tan(f) € [1, 2], then
the signal advances through the gap. Analogously, if 6 < 0 and
v > 2 and yet v + tan(f) € [1, 2], then the signal advances through
as well. This then allows us to define an / axiom for the sonar in
(x). Intuitively, when Blocked holds at situation s, we assume the
sonar’s reading to have additive Gaussian noise (with unit variance)
centered around ¢, but when the sonar’s signals can reach WALL-E,
we assume its reading to have additive Gaussian noise (with unit
variance) centered around 6 + A. (The N term is an abbreviation for
the mathematical formula defining a Gaussian density.)

Initial constraints

The final step is to decide on a p specification for the domain. Re-
call that the p fluent is used to formalize the (probabilistic) uncer-
tainty that the robot has about the domain. This perhaps accounts
for a major difference between the work here and almost all prob-
abilistic formalisms. For us, in a sense, p is just another fluent
function, allowing the domain modeler to provide incomplete and
partial specifications. But since our objective in this paper will be
to show, in the least, that robot localization behaves as it does in
standard probabilistic formalisms, we discuss two examples with
fully known joint distributions in the next section. There are other
possibilities still, a discussion of which we defer to Section 5.

4. PROPERTIES

Before looking at the two examples, let us briefly reflect on what
is expected. A reasonable belief change mechanism would support
the following:



o Suppose the agent believes v to be uniformly distributed on
[0,10]. If the robot then uses its sonar and senses a value
close to A + ¢ say 5.9, it should come to believe that it is
located at a door, which would deflate its beliefs about every
point notin [1,2]U[3,4]U[7, 8] (i.e. open gaps in WALL-A.).

e Suppose the robot moves 2 units away from the X axis and
then uses its sonar obtaining a reading of 5.8. It should then
believe, rather confidently, that it must be in [3, 4] since that
is the only trajectory that supports a door initially and a sec-
ond door after 2 units.

We now confirm these intuitions below.

xi. p(e.S0) 1 if(h=6Ave]0,10] A0 =0)[c]
. p(, = .
Pit0 0 otherwise

Table 3: Certainty about 6.

Example 1

The first case we study will be the simpler one among the examples.
We imagine (xi) from Table 3 to be the p specification which says
that the agent believes v to be uniformly distributed on [0, 10], 7 = 6
and § = 0.> This is a complete specification, in the sense that a
unique joint distribution is provided. Moreover, owing to the exact
knowledge that the robot has about its orientation, it is very certain
on when the sonar would reach WALL-E and when it would stop
at WALL-A, viz. the situations where v € [1,2] or v € [3,4] or
v € [7,8] are the only epistemically possible ones where Blocked
will not hold. Therefore, the agent initially beliefs v to be uniform,
as shown in Figure 2, but after sensing 5.9, v values in the gaps will
be considered with high probability (and equally likely) while the
remaining v values will be given low p values.

Here are some properties of the basic action theory stated more
formally:

THEOREM 1. Let D be a basic action theory that includes the
sentences in Table 2 and Table 3. Then:
1. DE Bel(v €[3,4.57],8y) = .157

Intuitively, for the numerator of Bel, we are to integrate a
function ¢(x,y,z) (where x corresponds to the fluent h, y
corresponds to the fluent v and z corresponds to the fluent
0) that is .1 when y € [3,4.57] and O otherwise. We get

;" .1dy = .157. (The denominator is 1.)
2. Bel(v € [3,4],do(sonar(5.9),Sy)) = .333
We do the expansion of Bel in detail for this one. We have:
| J-N@G+2-59;0,1) if (... AyY)[d]

- f 1-N(@©-5.9;0,1) if .. A=)
Y yeR .
0 otherwise

where, the ellipses stands for

h=6A0=0Ave[0,I0]AVv=yA
v(do(sonar(5.9), now)) € [3,4];

3We use the usual “case” notation with curly braces:

Cfn ity . i
Z_{tz otherwise Woz=n)A(Y Dz=10n).

Figure 2: Beliefs initially and after sensing 5.9 when 6 = 0.

and ¢ denotes
(v+tanf e [1,2]) vV (v+tan6 € [3,4]) V(v +tanf € [7,8]).

The idea is simple. First, from (xi), those initial situations
where i = 6,6 = 0 and v € [0, 10] are the only ones with non-
zero p values. Strictly speaking, we would need to perform
integration over x,y and z, but we avoided clutter and range
only over y, as the 4 and 6 values are fixed. By means of
(iii), for various real values of y, we will be ranging over all
initial situations. Next, since we are interested in the belief
in v € [3,4], as in the previous item, we give all other suc-
cessor situations a density of 0 when calculating the numera-
tor. Third, we note that when Blocked holds (tested using ),
from (x) and (ii), p values get multiplied by N(6 — 5.9;0, 1),
and when not, p values get multiplied by N(6 +1—-5.9;0, 1).
Analogously, for y, we derive the same expression but by
replacing v[do(sonar(5.9),now)] € [3, 4] in the conditionals
by true. As a final simplification, for this particular property,
because tan 6 = 0, the second condition in the case statement
(with = ) is not satisfiable, and so we get

1
—f.]-N(.l;O,])dvz.333.
Y

3

AXN(@();0,9) if(h=6Avel0,10])[c]
0 otherwise

xi. p(t,So) = {

Table 4: Uncertainty about 6.

Example 2

‘We now consider a more interesting p specification, where the ori-
entation will have a significant role, thereby affecting the nature of
belief after sensing. The p we are thinking of is the one specified



in Table 4. Here, & = 6, v is uniformly distributed as before, but
6 is normally distributed around O with a variance of 9. This too
is a complete specification, in the sense that there is a unique joint
distribution corresponding to the p axiom.

Consider for the moment what would happen after sensing once.
Unlike in Figure 2, there is uncertainty regarding 6, which means
that sensing (say) 5.9 will not imply full confidence in v being in
[1,2]U[3,4]U[7,8]. Indeed, as discussed earlier, even for v values
less than 1, the orientation may cause the sonar to sense WALL-E.
Moreover, a larger range of 6 values may cause the sonar to sense
WALL-E in the [3,4] interval rather than the [1,2] interval due to its
lack of wall obstructions, causing a belief density change as shown
in Figure 3. After moving (say) 2 units and sensing values closer
to 4 + ¢ will lead to a more definite localization, as also shown in
Figure 3.

Here are some properties of this second basic action theory:

THEOREM 2.: Let D be a basic action theory that includes the
sentences in Table 2 and Table 4. Then:

1. DE Bel(v € [3,4.57],8y) = .157
We are integrating under the same conditions initially as in

the previous example, except that we now have f34'57 fR -
N(z;0,1) dz dy leading to .157.

2. D E Bel(v € [3,4],do(sonar(5.9), Sy)) =~ .31
D E Bel(v € [2.8,4.2], do(sonar(5.9), Sp)) ~ .33
It is worth developing this in detail and contrasting it with
what we had previously. Picking the second, Bel expands as:

1 N(L;0,1) it (... AY)led
- f f d-N(z0,9) - IN(4.9;0,1) if Ae(... A =P)[e]
Y yeR JzeR

0 otherwise
where (analogously) the ellipses stands for:

h=6Avel[0,10]A0=zAVv=yA
v(do(sonar(5.9), now)) € [2.8,4.2]

and ¢ is (exactly as before):
(v+tanf € [1,2])) V(v+tanf € [3,4]) V(v +tand € [7, 8]).

Note the simplification of the / values for the sensing action:
NG +1-590,1) = N(1;0,1) and N6 - 5.9;0,1) =
N(4.9;0,1).

As pointed out earlier, what is interesting about Bel’s expan-
sion here is that since 6 # 0, the sensor may read d + A even
if the robot is not located in [1, 2], [3, 4] and [7, 8]. This ac-
counts for belief in (say) exactly [3,4] being less than 1/3,
which is different from the previous example.

3. D E Bel(v € [3,4],do([sonar(5.9), move(2,90)], Sy)) =~ .32

Here, the belief in [1, 2] after sensing 5.9, which is also .33
owing to the open door at [1,2], is transferred to [3, 4] after
moving laterally by 2 units.

4. D E Bel(v € [3,4],
do([sonar(5.9), move(2,90), sonar(5.83)], Sp)) = .96
After sensing a value close to A+, moving and sensing A +¢
again, the robot is very confident about the [3,4] interval.

We will not expand Bel completely but just point out that the
density function is

1N (0,9 NG +1-59;0,1)- N + 1 —5.83;0, 1)

at initial situations where:

h=6Ave[0,10] A

(v+tanf e [1,2]Vv+tanf € [3,4] Vv +tan6 e [7,8]) A
(v+tanf+2€[1,2]Vv+tanf+2€[3,4] Vv
v+tanf+2 € [7,8]).

Roughly speaking, these situations are those that support the
observations of 5.9 and 5.83 in the best possible way. Note
that, for the second sensing action, we need to test whether
the incremented value of v after move(2, 90) is within a gap.
It is not hard to see that when v is in the vicinity of [3,4],
we would easily satisfy these constraints, which then has the
intended effect.
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Figure 3: Belief change with normally distributed 6: after sens-
ing 5.9, moving 2 units, and sensing 5.83.

S. DISCUSSIONS

As seen in much of the work in cognitive robotics [23, 33], a
logical language like the situation calculus allows for actions with



complex context-dependent prerequisites and effects. But in com-
parison to standard (non-logical) probabilistic formalisms, the ad-
vantages of our proposal are perhaps most evident in terms of what
is allowed in the initial specification of the p fluent. The two exam-
ples used in the paper were comparable to unique joint probability
distributions, which are standard. But that is not the case for one of
the form:

Yu(p(L, So) = UW; 0, 10)[e]) V Ye(p(e, So) = UW; 3, 13)[e])

This says that the agent believes v to be uniformly distributed on
[0, 10] or on [3, 13], without being able to say which. (That is, the
U term is an abbreviation for the mathematical formula defining
a uniform density.) As one would expect (in logic), appropriate
beliefs will still be entailed, but perhaps they will not function as
straightforwardly as in (xi) in Tables 3 and 4. For example:

e initially, it will follow that the robot is certain that v ¢ [30, 40],
and will believe that v € [3, 10] with a probability of .7;

o if the robot has sensors to indicate that it is well within (say)
the range of [7,8], after a few sensor readings, the disjunctive
uncertainty about v will no longer be significant.

Much weaker specifications are possible still, where the modeler
may leave the nature of the distribution of some fluents completely
open, which would correspond more closely to incomplete infor-
mation in the usual non-probabilistic sense, among others. All of
these are supported in our framework.

6. RELATED WORK

There are three main strands of related work from the representa-
tional aspect. They are probabilistic formalisms, relational proba-
bilistic languages and finally action languages. We discuss them in
turn, but focus our attention on robot localization where possible.

There are numerous probabilistic formalisms, see [40] for a com-
prehensive overview, some of which are at the heart of most tradi-
tional robotic systems. Much of the results are algorithmic in na-
ture [13], in the sense of investigating sampling-based techniques,
approximating domains with Gaussian distributions, and so on. At
the outset, we mentioned already that this paper is about a spec-
ification. So, wrt the underlying formal characterization, almost
all of these are based on Bayesian conditioning [31]. They also
assume a full specification of a joint distribution, specified com-
pactly in the form of (say) conjugate distributions such as Gaus-
sians or dependency structures such as Bayesian networks. Thus,
in terms of methodology, none of these are geared to handle strict
uncertainty, logical connectives, and partial specifications. Similar
limitations also apply to early work on diagnosis in hybrid systems
[29]. Moreover, apart from a few cases such as [11] and [18] that
are propositional, they do not reason about rich actions explicitly.

Logical formalisms for probabilistic reasoning, such as [20, 1],
are equipped to handle features such as disjunctions and quantifiers,
but they do not explicitly address actions. Relational probabilistic
languages and Markov logics [30, 34] also do not model actions.
Recent temporal extensions, such as [9], treat special cases such
as Kalman filtering, but not complex actions. Similar limitations
apply to certain fuzzy logic approaches for Bayesian filtering [21].

In this regard, action logics such as dynamic and process logics
are closely related. These, and others based on the situation cal-
culus and the fluent calculus [39], in fact, are precisely the kind
of logical languages we expect to be used for high-level control.
But most of the work in the area, to the best of our knowledge,
is limited in terms of one or more of the following: (a) they are
propositional, (b) they have not been extended to handle noise that

is continuous, and (c) they have not formalized and studied how
localization can be realized. For example, in the area of dynamic
logic, [41] treat probabilistic nondeterminism, but (a), (b) and (c)
hold here. Related frameworks [19], including recent probabilistic
planning languages [22, 42, 35], are also ones where (a), (b) and
(c) hold. Finally, proposals based on the situation and fluent calculi
are first-order [2, 32, 7, 27, 38, 15, 14, 3, 39], but none of them
deal with continuous sensor noise, with the exception of [4] that
we build on. Also, (c) holds for these.

Finally, there has been recent work on Symbolic POMDPs, which
are also based on first-order formalisms such as the situation cal-
culus [36, 6]. Although a full comparison is difficult since these
methodologies implement a particular planning framework while
we have only discussed projection, there are significant differences.
The most recent continuous extension [36], for example, does not
allow both states and observations to be continuous in a general
way. Moreover, the framework considered here explicitly reasons
about belief change in presence of strict uncertainty, thereby offer-
ing a rich account of the agent’s evolving knowledge state. Thus,
one should view the framework here as an underlying logic of belief
upon which reward structures and such could be further specified
where appropriate [7].

7. CONCLUSIONS AND OUTLOOK

This paper addresses a fundamental limitation when applying
logical knowledge representation formalisms to robotics. One is
forced to abstract the sensing results in a categorical fashion, or
much worse, abandon its inner workings. In that regard, this pa-
per’s essential contribution was to explain and suggest how the
modeler may represent her domain in a basic action theory, and
how that gets further used to localize a mobile robot. We think
this clarification and logical study is original, and not only is it
fully compatible with existing probabilistic formalisms, but goes
well beyond by allowing complex action types and partial specifi-
cations. These expressive capabilities are significant, because they
are the very reason why (first-order) logical languages are chosen
for modeling and reasoning in the first place. Giving them up would
not be preferable for many domain modelers.

There are many avenues for future work, and we highlight three
new directions. First, computation. It may seem that semantic char-
acterizations of the form offered in this paper only serve as spec-
ifications, and may not play a role in reasoning. Recently, we [5]
have shown how regression can be formulated for degrees of belief,
by means of which projection queries reduce to formulas about the
initial situation. Most significantly, the dynamic components of a
basic action theory will not be needed. Because of this, perhaps,
one may study Monte Carlo or other sampling-based methods to
reason about beliefs after actions, which would serve to further re-
late techniques from robotics [40] and knowledge representation
methodologies of the sort considered here.

Second, we only discussed projection in this paper. If one seeks
to employ a formalism such as this one on an agent, one would
need syntactic structures to represent complex actions and proce-
dures. For the standard situation calculus, a programming language
called GOLOG has been proposed [33]. Only categorical beliefs
are treated there, and sensors and effectors are assumed to be de-
terministic, and so, an extension for probabilistic beliefs and noisy
effectors/sensors is an exciting avenue for future work.

Finally, a more general account of localization would involve a
robot perhaps discovering the environment on its own [40], and
how that can be realized as a basic action theory is an important
open question.
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